
Unofficial guide to AstroArt’s script commands

Prologue

Since using the CCD camera for my astronomical observation my reference software for the recovery and
processing of images has always been AstroArt. Naturally over the years I have found to handle other
software of this type, certainly some very good, and although my limited experience, they not allow me to say
too much in benchmarking, I think for me the unbeatable immediacy with which the AstroArt user’s are able
to use this software almost immediately. A very friendly user interface, combined with the scientific rigor of
the algorithms used has made one of the leading software in the field of amateur astronomy. The advent of
version 3.0 and higher, with command script has further expanded its potential, so that it is possible (if
provided with the necessary hardware) to perform automated tracking and recovery, which greatly facilitate
the conduct of the observing sessions.
Anyone who had a minimum of programming experience also knows how difficult and tedious write and
especially keep updated the user manual. Therefore it happens that the manuals available is not always up
to date with respect to the evolution of software, but also that some features are not always explained
sufficiently extensive for the average users.

This guide seeks to illustrate some commands for AstroArt ‘s scripts that, in the user manual are poorly
documented or even at all. As the title suggests this is an unofficial guide and although parts of it modeled on
the original user manual does not purport to replace it, but rather as an informal integration with regard to the
commands of the scripting of this magnificent software.

The commands are present in version 4.0 AstroArt, GUI 3.8 and later. Any inaccuracy and error that was to
emerge on this guide are due solely to myself and I ask pardon in advance.

The Scripts

A script is a list of commands executed in sequence. Through the scripts you can automate several
observational procedures such for example, automated search of asteroids and supernovae, taken
photometric image and very high. This is possible because through AstroArt is possible to control not only
the CCD camera, but also the filter wheel and the telescope (if this is pointing to power).
The scripting language AstroArt, also known as "ABasic" is a kind of dialect of BASIC with a syntax very
similar to that of many types of BASIC, (GWBasic ™, ™ QuickBasic, Visual Basic ™, VBScript ™, etc.).

Example of script (taken from manual AstroArt and testable with the CCD simulator in AstroArt)

Camera.Start(10)
Camera.Wait
Image.Save("C:\sample.fit")

The first command line starts up an exposure of 10 seconds, the second command line waiting for the end of
the exposure before continuing with the script. Finally, the third line of command saves the image you just
captured in drive c: \ calling it "sample.fit.

Another example of a script always taken from the manual AstroArt: the shooting of 50 images for the
detection of supernovae.

for i = 1 to 50
ra = Telescope.List.Ra(i)
de = Telescope.List.Dec(i)
name$ = Telescope.List.Name$(i)
Telescope.Goto(ra,de)
Telescope.Wait
Camera.Start(60)
Camera.Wait
Image.Rename(name$ + ".fit")
Image.save(name$ + ".fit")
next i

In this simple script coordinates and name the of the galaxies are recovered directly from the list pre-loaded
into the Telescope Window. For each galaxy provides the script to point the telescope, start the exposure
and save the scanned image.

Variables and function
Gli
The ABasic supports two types of variables, numeric variables and string variables. The first contains a
numerical number, while a variable string contains an alphanumeric string.

Numeric variable

They contain a number. This number is internally represented by a floating-point value with double precision
(64 bits, 15 digits).

String variable

A variable string contains alphanumeric text. This text may be represented by one or more lines of text. The
maximum size of a string variable is 64 MB.

 Example:

a$ = "Hello"
b$ = a$ + "World"

The b$ string variable is now composed by the string "HelloWorld"

A single character of a string can be read using square brackets, thus Using the previous example a$ [1]
returns as a result of "H" and a$[2] returns “e” and so on.
If the index number shown in brackets exceeds the length of the string this restarts from the beginning,
therefore, $ [6] still returns "H".

A single row of a multi-line string can be read using curly brackets.

Example:

If the variable a$ a contains the following text distributed on three lines

“This text
is distributed
on three lines ”

In this case a${2} returns the string distributed on the second line “is distributed".
The function count(a$) returns on the number of lines comprised in a multi-line string.

Reserved word.

These words are part of the ABasic language, so normally they must not be used as an argument in string
variables. They are:

IF MOD WHILE CLS
THEN REM ENDWHILE
ELSE FOR GOTO
ENDIF NEXT GOSUB
OR STEP PRINT
AND BREAK INPUT
NOT CONTINUE END

Let us now describe in more detail.

Cyclical function: FOR, NEXT, STEP, BREAK, CONTINUE , WHILE, ENDWHILE.

The ABasic supports two types of loop instruction: For -Next function and While -Endwhile function.
The complete syntax for the FOR-NEXT loop function is as follows:

FOR <variable> = <expression> TO <expression> [STEP <numeric constant>]
...
...
NEXT <variable>

For -Next instruction trigger a loop for a number of times of the instructions between the two commands: For
(cycle start) and Next (end cycle). A simple example is print to the screen the numbers from 1 to 10, "a" is
the control variable.

for a = 1 to 10
print a
next a

The break command exits from a loop, in this example the cycle is interrupted when the value of control
variable 'a' becomes larger than 5.

for a = 1 to 10
print a
if a>5 then break
next a

The CONTINUE command is used inside a For -Next loop and acts in a manner analogous to NEXT
command, so automatically start a new iteration. For example:

for a = 1 to 10
print a
if a > 5 then continue
print "Test"
next a

Finally, the STEP command is used at the beginning of a For -Next loop to determine the progression of the
control variable. For example:

for a = 1 to 10 step 2
print a
next a

In this way the control variable 'a' skip all even numbers from 1 to 10. STEP function may also to have
negative values, for example:

for a = 10 to 1 step -1
print a
next a

Instead, the WHILE-ENDWHILE command evaluates the condition at the beginning of the cycle. If the
condition is false then the cycle is interrupted and execution continues after the ENDWHILE command.

For example:

a = 1
while a <= 10
print a
a = a+1
endwhile
print “ cycle finished ”

because the WHILE command evaluates the condition at the beginning of the cycle the instructions inside
the loop could also never be executed.
The BREAK and CONTINUE commands can be used in a loop WHILE-ENDWHILE in a completely similar
to what has been seen for the FOR-NEXT loop.

Conditional Function: IF, THEN, ELSE, ENDIF, OR, AN D, NOT

The IF-THEN-ENDIF commands evaluates a logical expression and determines the program flow according
to the result of that expression.

Some examples of logical expressions:

a > 5 and b$ = "astro"
a >= 3 or not (b = 5)

The logical and mathematical operators used in logical expressions have their own scale of priorities when
they have to be written in the list of instructions, the following is the scale of precedence of these operators
going from highest priority to lowest priority.

Operator priority:

Highest priority (), < , > , <= , >= , <> , = , NOT, AND, OR Lowest priority

Extended syntax of the command IF-THEN-ENDIF

IF <logical expression> THEN
...
...
[ELSE]
...
...
ENDIF

Example of command IF-THEN-ENDIF

for i = 10 to -10 step -1
if i>0 then
print "positive value"
endif
if i=0 then print "zero"
if i<0 then
print "negative value"
endif

Compact sintax of the command IF-THEN

IF <logical expression> THEN <instruction> [ELSE]< instruction >

Example of Compact sintax of the command IF-THEN

for a = 1 to 10
if a <= 5 then print "-" else print "+"
next a

Other function:

Function

Details

Example

REM Any text preceded by REM
command is ignored during
program execution.
This feature allows the
inclusion of records in the
list commands. The inclusion
of a superscript “ ’ ” works
in the same way than REM.

REM notes
‘notes

Output:

GOTO n Skip the program execution
to line n ignoring all that
lies between GOTO n command
and line n.

for i = 1 to 10
if i = 5 then goto 10
print i
next i
10 print " I jumped on line
10"

Output:
1
2
3
4
I jumped on line 10

GOSUB n
RETURN

Skip the program execution
to line n ignoring all that
lies between GOTO n command
and line n,

but once met with the RETURN
command Back to the line
immediately below the
command GOSUB n.

for i = 1 to 10
if i = 5 then gosub 10
print i
next i
END
10 print " I jumped on line
10"
print " but now back where I
started "
RETURN

Output:
1
2
3
4
I jumped on line 10
but now back where I started
5
6
7
8
9
10

PRINT “s” Print to the screen a text
“ s ”, numeric variable n or
alphanumeric string s$.
Text and variables may also
be linked on the same
command line.

a=4
b$="Version"
c$="execute with"
print "script AstroArt "
print c$+" Astroart "+b$;a

Output:
script AstroArt
execute whit Astroart Versione
4

INPUT Allows input from the user's
numerical variables or
string variables.

input "insert a number: ",n
input "insert a string: ",s$
print n
print s$

Output:
The program shows two
successive windows for insert
the data. Written data that
appear in the Output window.

END ends execution of a script. print "program expired at row
3"
print "row 1"
print "row 2"
print "row 3"
END
print "row 4"

Output:
row 1
row 2
row 3

CLS Clear the output windows. for i = 1 to 10
print "abcdefghilmo"
next i
message ("press 'OK' for
clearing the output window")
CLS

Output:

Numeric functions.

Function

Details

Example

pi() returns the value of pi
greek

Print pi()

Output:
3.141592654

sin(n)

Calculate the sine of the
angle n in radians.
If the angle n is expressed
in degrees instead of
radians, use the following
procedures:
sin(n*pi()/180)
otherwise sin(degtorad(n))

Print sin(90)

Output:
0.8939966636

cos(n) Calculate the cosine of the
angle n in radians.
If the angle n is expressed
in degrees instead of
radians, use the following
procedures:
cos(n*pi()/180)
otherwise cos(degtorad(n))

Print Cos(90)

Output:
-0.4480736161

tan(n) Calculate the tangent of the
angle n in radians.
If the angle n is expressed
in degrees instead of
radians, use the following
procedures:
tan(n*pi()/180)
otherwise tan(degtorad(n))

Print tan(50)

Output:
-0.271900612

exp(n) Calculate the value of
Napier's number raised to
the n , or n

Print exp(10)

Output:
22026.46579

ln(n) Calculate the value of the
logarithm to the base
(natural logarithm) of n

Print ln(10)

Output:
22026.46579

log10(n) Calculate the value of the
logarithm to the base 10 of
n

Print log10(100)

Output:
2

log2(n) Calculate the value of the
logarithm to the base 2 of n

Print log2(50)

Output:
5.64385619

sqr(n) Calculate the square root of
number n

Print sqr(16)

Output:
4

abs(n) Calculate the absolute value
of number n

Print abs(15)
Print abs(-15)

Output:
15
15

rnd(n) Return a random number
between 0 and n

For i = 1 to 5
Print rnd(10)
Next i

Output:
0.9364372841
6.289201556
2.800253921
8.77184656
1.612342733

sgn(n) Return the sign of a number
n according to the scheme:

sgn(n) = -1 if n < 0,
sgn(n) = 0 if n = 0,
sgn(n) = 1 if n > 0.

Print sgn(-12.345)
Print sgn(0)
Print sgn(12.345)

Output:
-1
 0
 1

fix(n) Return the integer part of a
number n

Print fix(8.771845)

Output:
8

int(n) Return the integer part of a
number n

Print int(8.771845)

Output:
8

round(n[,n1]) Rounds a number n to n1 th
decimal place.

NOTE: if n1 are omitted n
are rounded for zero decimal
place .

Print round(8.771845,3)
Print round(8.771845)

Output:
8.772
9

frac(n) Return the fractional part
of n number.

Print frac(10.45678)

Output:
0.45678

asin(n)

Calculates the arcsine in
radians of a number n.
Function valid in the range
(1, -1) For values outside
this range is returned the
null value "NAN".
For convert from radians to
grade: asin(n)*180/pi()
otherwise radtodeg(asin(n))

Print asin(1),”radians”
Print asin(n)*180/pi(),”Grade”

Output:
1.570796327 radians
90 Grade

acos(n) Calculates the arccosine in
radians of a number n.
Function valid in the range
(1, -1) For values outside
this range is returned the
null value "NAN".
For convert from radians to
grade: acos(n)*180/pi()
otherwise radtodeg(acos(n))

Print acos(1),"radians"
Print acos(n)*180/pi(),"Grade"

Output:
0 radians
0 Grade

atan(n) Calculates the arctangent in
radians of a number n.
For convert from radians to
grade: atan(n)*180/pi()
otherwise radtodeg(atan(n))

Print atan(1),"radians"
Print atan(1)*180/pi(),"Grade"

Output:
0.7853981634 radians
45 Grade

atan2(nx,ny) Calculates the arctangent2
in radians of a point with
coordinates (nx, ny).
For convert from radians to
grade: atan2(nx,ny)*180/pi()
otherwise
radtodeg(atan2(nx,ny))

print atan2(40,50)

Output:
0.6747409422

sinh(n) Calculates the hyperbolic
sine of a number n in
radians.
For convert from radians to
grade: sinh(n*pi()/180)
otherwise sinh(degtorad(n))

print sinh(10)

Output:
11013.23287

cosh(n) Calculates the hyperbolic
cosine of a number n in
radians.
For convert from radians to
grade: cosh(n*pi()/180)
otherwise cosh(degtorad(n))

print cosh(10)

Output:
11013.23292

tanh(n) Calculates the hyperbolic
tangent of a number n in
radians.
For convert from radians to
grade: tanh(n*pi()/180)
otherwise tanh(degtorad(n))

print tanh(10)

Output:
0.9999999959

asinh(n) Calculates the hyperbolic
arcsine in radians of a
number n.
For convert from radians to
grade: asinh(n)*180/pi()
otherwise radtodeg(asinh(n))

print asinh(100)

Output:
5.298342366

acosh(n) Calculates the hyperbolic
arccosine in radians of a
number n.
For convert from radians to
grade: acosh(n)*180/pi()
otherwise radtodeg(acosh(n))

print acosh(10)

Output:
2.993222846

atanh(n) Calculates the hyperbolic
arctangent in radians of a
number n.
Function valid in the range
(1, -1) For values outside
this range is returned the
infinite value "INF".
For convert from radians to
grade: atanh(n)*180/pi()
otherwise radtodeg(atanh(n))

print atanh(0.5)

Output:
0.5493061443

degtorad(n) Convert a number n from
grade to radians.

n=57.29577951
print "Grade value: ";n
print "Radian equivalent: ";
degtorad(n)

Output:
Grade value: 57.29577951
Radian equivalent:0.9999999999

radtodeg(n) Convert a number n from
radians to grade.

.

n=1
print "Radians value: ";n
print "Grade equivalent: ";
radtodeg(n)

Output:
Radian value: 1
Grade equivalent: 57.29577951

modulo(n1,n2) Calculate the expression

radq ((n1^2)+(n2^2)).

print modulo(1,5)

Output:
5.099019514

len(s) Returns the number of
characters in a string s
(also counted the spaces
between words).

a=len("viva AstroArt!")
print "the string contains
";a;" characters "

Output:
the string contains 14
characters

val(s) Convert a string contains
numeric characters in the
corresponding number.

a$="1"
print val(a$)+2

Output:
3

asc(s)

Return the ANSI code of the
leftmost character of the
string.

print asc("AstroArt")

Output:
65

pause(n) Pauses program execution for
n number of seconds.

pause(30)

Output:

n1 mod n2 Return the rest of division
n1 / n2

print 14 mod 4

Output:
2

count(s) Return the number of row in
a multi line string s .

a$="bye"+crlf$()+"bye"
print a$
print crlf$()
print "the number of rows in
the variable string is:
";count(a$)

Output:
bye
bye

the number of rows in the
variable string is: 2

counter(n) This function is mentioned
in the AstroArt manual but
it does not exist in ABasic

String function

Function

Details

Example

ucase$(s) Converts all characters in
a string s in uppercase.

print ucase$(“astroart”)

Output:
ASTROART

lcase$(s) Converts all characters in
a string s in lowercase.

print lcase$(“ASTROART”)

Output:
astroart

ltrim$(s) It removes the empty
spaces to the left of a
string.

print "without ltrim$: "+"
astroart"
print "with ltrim$: "+ltrim$("
astroart")

Output:
without ltrim$: astroart
with ltrim$: astroart

rtrim$(s) It removes the empty
spaces to the right of a
string.

print "astroart "+" without
rtrim$:"
print rtrim$("astroart ")+"
with rtrim$:"

Output:
astroart without rtrim$:
astroart with rtrim$:

chr$(n) Returns the character
corresponding to ASCII
code number n.

print chr$(64)

Output:
@

str$(n) Convert a number n from
numeric value to
characters string.

a=234
a$=str$(a)
print "a = ";a;" is a number"
print "a$ = "+a$+" is a string"

Output:
a = 234 is a number
a$ = 234 is a string

mid$(s,n1,n2) Return a substring of s
string that is cut on the
left starting from
characters n1 and n2 is
number characters long.

print
mid$("abcdefghilmnopqrstuvz",2,5)

Output:
bcdef

hex$(n) Converts a decimal number
n in the string that
represents the value in
hexadecimal format.

print hex$(1000)

Output:
3E8

left$(s,n) Return a substring of
string s that is cut on
the left from the first
character and n is number
characters long.

print left$("AstroArt",5)

Output:
Astro

right$(s,n) Return a substring of
string s that is cut on
the right from the first
character and n is number
characters long.

print right$("AstroArt",3)

Output:
Art

ltab$(s,n) Shift a string to the
right for n-len(s)
characters than a string
s .
This command working only
if n-len(s)>0

a$="Astro"
print "the work'";a$;"' it’s long
";len(a$);" characters"
for n=0 to 10
print ltab$(a$,n)+str$(n)
next n

Output:
the work ' Astro ' it’s long 5
characters
Astro0
Astro1
Astro2
Astro3
Astro4
Astro5
Astro 6
Astro 7
Astro 8
Astro 9
Astro 10

rtab$(s,n) Shift the string s to the
right of n-len(s)
characters of the start
line.
This command working only
if n-len(s)>0

a$="Astro"
print "the work'";a$;"' it’s long
";len(a$);" characters"
for n=0 to 10
print rtab$(a$,n)+str$(n)
next n

Output:
the work ' Astro ' it’s long 5
characters
Astro0
Astro1
Astro2
Astro3
Astro4
Astro5
 Astro6
 Astro7
 Astro8
 Astro9
 Astro10

format$(n,s) Replaces the character 0
(zero) in the string s
with digits of the numeric
value n. The replacement
takes place from right to
left. If the number of 0's
is present in less than
the number of digits n of
the remaining digits will
be shown to the left of
the last 0. If the number
of 0 in s is greater than
the number of digits of n
0 to the left of the last
digit of n will appear as
zero.

print date$(); " today’s date"
aaaammgg$=left$(date$(),4)+mid$(d
ate$(),6,2)+right$(date$(),2)
prin t format$(val(aaaammgg$),"Or:
year 0000 month 00 day 00")

Output:
2010 10 06 today’s date
Or: year 2010 month 10 day 06

time$() Return a string with
actual value of time in
(hh mm ss) format.

print time$()

Output:
09 06 36

date$() Return a string with
actual value of date in
(aaaa mm gg) format.

print date$()

Output:
2010 10 06

crlf$() Function equivalent to the
carriage return, insert a
blank line in the output
window.

print "astroart "+"astronomical
"+"software"
print crlf$()
print "astroart
"+crlf$()+"astronomical
"+crlf$()+"software"

Output:
astroart astronomical software

astroart
astronomical
software

opentext$(s) Open a text file named s .
Please note that in the s
string must also appear
the file extension and the
path.
If path is omitted the
file will be searched only
in the current directory.

file$=opentext$("C:\WINDOWS\syste
m32\rsvpcnts.h")
print file$

Output:
/*++

Copyright (c) 1996 Microsoft
Corporation
#define RSVPOBJ 0

#define RSVP_INTERFACES 2
#define RSVP_NET_SOCKETS 4
#define RSVP_TIMERS 6

#define API_SESSIONS 8
#define API_CLIENTS 10
Etc etc etc…….

savetext$(s1,s2) Write the string s1 in a
text file named s2 .
Please note that in the s2
string must also appear
the file extension and the
path.
If path is omitted the
file will be searched only
in the current directory.
Warning : This command
overwrites any other file
with the same name in the
same folder.

print savetext$("AstroArt, the
best software for astronomical
imaging","c:\AA.txt")
print "in the directory c:\
should have appeared "
+crlf$()+"a text file named
'AA.txt' " +crlf$()+"contenent
inside the sentence:"
+crlf$()+"'AstroArt, the best
software for"
+crlf$()+"astronomical imaging'"

Output:

in the directory c:\ should have
appeared
a text file named 'AA.txt'
contenent inside the sentence:
'AstroArt, the best software for
astronomical imaging'

copytext$(s) Copy the string s in the
clipboard.

print copytext$("AstroArt")
a$=pastetext$()
print a$

Output:
AstroArt

pastetext$() Paste the contents of the
clipboard on the output
windows or in a variable.

print copytext$("AstroArt")
print pastetext$()
a$=pastetext$()
print a$

Output:
AstroArt
AstroArt

finddir$(s1,s2) Search a directory named
s2 in a path s1 .

input "Path directory ",path$
input "directory name to
find",dir$
a$=finddir$(path$,dir$)
print "Search: "+a$
al$=lcase$(a$)
dirl$=lcase$(dir$)
if al$=dirl$ then
print "directory found"
else
print "directory NOT found"
endif

Output
directory found (if exist)

oppure:

directory NON found (if not
exist)

findfile$(s1,s2) Search a file named s2 in
a path s1 .

pathltp$="c:\"
b$="AA.txt"
c$= pathltp$+b$
print savetext$("AstroArt, the
best software for astronomical
imaging",c$)
input "file name? ",obj_name$
findf$=findfile$(pathltp$,obj_nam
e$+".txt")
if findf$=(obj_name$+".txt") then
 print "File FOUND!"
endif
if findf$<>(obj_name$+".txt")
then
print "File NOT FOUND!"
endif

Output:
File FOUND! (if you typed in the
input the uppercase text 'AA')
File NOT FOUND! (if you not typed
in the input the uppercase text
'AA')

message(s) Show a message on the
screen contenent the s
string.

Message(“Hello Milky way”)

Output:

ra$(n) Convert the RA (Right
Ascension) value expressed
as a decimal number from n
to a string indicating the
value of right ascension
expressed in hh mm ss.s

alpha=05.345678
print "Right Ascension:
"+ra$(alpha)

Output:
Right Ascension: 05 20 44.4

dec$(n) Convert the DEC
(Declination) value
expressed as a decimal
number from n to a string
indicating the value of
Declination expressed in
+/-gg pp ss.s

delta=-12.345678
print "Declination: "+dec$(delta)

Output:
Declination: -12 20 44

createdir(s) Create a directory with
the name and path
specified by the string s .
If you do not specify a
drive and / or the
directory’s path will be
created in the current
directory.

createdir("c:\images")

Output:

Function for CCD , Filter wheel and Telescope.

Funzione

Dettagli

Esempi

Camera.Start(n[,n1])

Take an exposure of n
seconds. Set n1 to zero
to take a dark frame.

Camera.Start(60,0)

Camera.Wait Waits until the end of
the exposure.

Camera.Exposing Returns “1” if a
exposure is in progress,
otherwise “0”.

Camera.Binning(n)

Sets the binning mode.n
is a
index to the binning
list in the “Settings”
page of the CCD panel.

Camera.Binning(2)

Camera.SelectDarkFrame

Camera.EnableDarkFrame(n)

Selects the current
image as dark frame and
automatically enables
the correction for the
following images.

Enables or disables the
dark frame correction.
n = 1 correction enable
n = 0 correction disable

Camera.SelectDarkFrame()

Camera.EnableDarkFrame(0)

Camera.Stop

Stops the current
exposures.

Guider.Stop

Stops the current
guiding session.

Guider.Close Close the guiding
window.

Guider.Select(n) Selects which CCD should
be used for
autoguide:
1 = main ccd,
2 = guide ccd,
3= secondary camera.

Guider.Select(2)

Guider.MoveReference([dx,
dy])

Changes the x and y
coordinates of the
reference star, to
perform the “dithered
guide”. If dx and dy are
not specified then
the shift will be
pseudo-random.

Guider.MoveReference()
GuiderMoveReference(-0.3,
0.7)

Camera.Connect([driver])

Camera.Disconnect

Connects the CCD driver
from Astroart.

Disconnects the CCD
driver
from Astroart.

Camera.Connect(“Simulator”)

Camera.StartAutoguide([x,
y])

Starts and autoguide
session. If x and y
parameters (the
coordinates of the guide
star) are not given then
this command
takes a sample image and
selects
automatically the best
star.

Camera.StartAutoguide()
x = Image.GetPointX()
y = Image.GetPointY()
Camera.StartAutoguide(x,y)

Camera.StopAutoguide()

Stop autoguide session.

Camera.Autofocus([x,y])

Starts an autofocus
session (requires the
Ascom autofocus plugin).
If x and y
parameters (the
coordinates of the focus
star) are not given then
this command
selects automatically
the best star from
the current image.

Camera.Autofocus()

x = Image.GetPointX()
y = Image.GetPointY()

Camera.Autofocus(x,y)

Focuser.GotoRelative(n) Moves the focuser up or
down by a specified
amount n.

Focuser.GotoRelative(-50)

Focuser.GotoAbsolute(n) Move the focuser to a
given coordinate.

Focuser.GotoAbsolute(1000)

Telescope.Goto(ra,dec) Moves the telescope to
the equatorial
coordinates ra
(0..24),dec. (-90..+90)

Telescope.Goto(23.45, 44.12)

Telescope.Wait Waits until the
telescope has completed
a Goto.

Telescope.Stop Stops the telescope.
Telescope.Ra

Telescope.Dec

Returns the current
position of the
telescope.

x = Telescope.Ra

y = Telescope.Dec

Telescope.Pulse(dir$
[,time])

Moves the telescope for
time seconds towards the
dir$ direction (“N”,”S”,
”E”,”W”). If time is
negative then the
direction is inverted.
If time is omitted, it
moves until the
Telescope. Stop
command.

Telescope.Pulse(“N”, 0.5)

Telescope.Speed(n) Sets the speed for Pulse
motion.
1=guide
2=center
3=find
4=slew

Telescope.Speed(4)

Telescope.List.Open(file$
)

Opens a text file which
contains objects
and coordinates. See
chapter 6.1.

Telescope.List.Open(“
c:\data\galaxies.txt”)

Telescope.List.Count

Returns how many objects
are listed in
the Telescope Window.

n = Telescope.List.Count

Telescope.List.Clear Clears the list of
object in the Telescope
Window.

Telescope.List.Ra(n)

Telescope.List.Dec(n)

Return the coordinates
of the n th
object of the list.

x = Telescope.List.Ra(25)

Telescope.List.Name$(n) Returns the name of the
n th object of the list.

a$ =Telescope.List.Name$(42)

Telescope.Send(s) Sends a string s to the
telescope via the serial
port.

Telescope.Send(“#Hc#”)

Wheel.Filters Returns the number of
filters of the filter
wheel.

n = Wheel.Filters

Wheel.Goto(n)

Wheel.Goto(s)

Moves the filter wheel
to the given filter
express.
expressed by its filters
number n or its filters
name s .

Wheel.Goto(4)

Wheel.Goto(“R”)

Image.Save(filename$) Saves the current image
with path and namefile
specified by filename$.
If the path are omitted
the image are saved in
the active directory.

Image.Save(“C:\images\
saturn.fit”)

Image.Rename(name$) Renames the current
image.

Image.Rename(“jupiter.fit”)

Image.Open(filename$) Opens an image from disk
with path and namefile
specified by filename$.
If the path are omitted
the image are saved in
the active directory.

Image.Open(“C:\moon.tif”)

Image.GetKey$(key$)

Image.GetKey(key$)

Reads string values from
the FITS header named
key$.

Reads numeric values
from the FITS header
named key$.

a =Image.GetKey(“NAXIS”)

a=Image.GetKey("EXPOSURE")

Image.SetKey(key$,value)

Write in the header a
parameter named key$
with the value value.

Image.SetKey(“COMMENT”,”
Bad seeing”)
Image.SetKey(“JD”,34234)

Image.FlipH Flips the current image
horizontally.This
feature requires
AstroArt 4.0 + Service
Pack 1.

Image.FlipV Flips the current image
vertically. This feature
requires AstroArt 4.0 +
Service Pack 1.

Image.Resize(x,y) Resize an image to the
size horizontal x and
vertical y . This feature
requires AstroArt 4.0 +
Service Pack 1.

Image.Resize(320,240)

Image.BlinkAlign Aligns the current image
with the next one inside
the Astroart Desktop and
blinks them. This
feature requires the
Service Pack1.

Image.BlinkAlign

Image.Close Closes the current
image.

Image.GetPointX()

Image.GetPointY()

Return the coordinate of
the selected point (or
star, or rectange) on
the current
image.

x = Image.GetPointX()

Image.DSS(ra,dec,name$) Creates a new image from
the ‘Digital Sky
Survey’ atlas. The DSS
images. This image will
be centered on the
coordinates ra and dec
and will be named name$.
Needs the DSS plugin.

Image.DSS(12.034,45.213,”a
steroid.fit”)

Output.Save(filename$) Saves the output panel
to disk with path and
namefile specified by
filename$.
If the path are omitted
the image are saved in
the active directory.

Output.Save(“C:\Log.txt”)

Output.Copy Copies the output panel
to the Clipboard.

System.Execute(filename$)

Executes a external
program.
with path and namefile
specified by filename$.
If the path are omitted
the program is searched
in the active directory.

System.Execute(
“C:\Windows\Notepad.exe
myfile.txt”)

System.Broadcast(message$
,
wparam,lparam)

Sends a Windows Message to all windows. This can be used to
control
other programs. The function is equivalent to:
h = RegisterWindowMessage(message$)
SendNotifyMessage(HWND_BROADCAST,h,wparam,lparam) .

Function not documented.

Function

Details

Example

system.shutdown Close AstroArt and power
off the computer.
Irreversible function,
use carefully.

